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Least squares methods have been useful for approximating solutions 

to elliptic systems which are not strictly coercive. 

is perhaps the most important example ([l] - [2] ) .  

the least squares formulation in this context, as compared with a standard 

Galerkin formulation, is the fact that it always produces a Hermitian 

positive definite system of algebraic equations. This is particularly 

attractive for three dimensional problems where storage considerations 

make iterative methods like S.O.R. desirable. The Stein-Ostrowski Theorem 

[3] states that for tiermitian systems this iterative method converges if 

and vriiy if the system is pos i t ive  d e f i n i t e .  

The Helmholtz equation 

The main advantage of 

The least squares formulation does however have one glaring defect, 

namely the extreme regularity on the solution that is needed to obtain 

convergence and stability. For example, a common least squares approximation 

to 

(1.2) 

is to require that 

A$ + q$ = f in R 

$ = 0 on aR 

R 

be minimized as $ and E vary over appropriate finite dimensional spaces. 

The saual choice is let +,? be piecewise polynomials of degree k - 1 on a 

grid with generic mesh spacing 

functions can be approximated to O(hk) 

of the least square approximations one neede, among other things, the 

h. These spaces have the property that smooth 

in L2. However, for this to be true 
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fol lowing r egu la r i ty  property [ l l  There is a number 0 < C < a such t h a t  

f o r  any func t ion  f i n  the  Sobolev space H (Q) t h e r e  is a unique s o l u t i o n  
1 

Q of (1.1) - (1.2) such t h a t  

This r e s u l t  is va l id  f o r  only smooth regions Q, and i n  p a r t i c u l a r  it i s  n o t  

v a l i d  i f  n has corners.  Moreover, numerical  experiments i n d i c a t e  t h a t  

something l i k e  (1.4) may a c t u a l l y  be necessary.  For example, a series of 

numerical experiments [41 with regions with c racks  have shown t h a t  t h i s  

approach produces substandard r e s u l t s  even with a r a t h e r  extreme mesh 

refinement near  the corner.  

I n  t h i s  paper we consider  an a l t e r n a t e  least squares  approximation i n  

weighted spaces. 

appropr i a t e  w e i g h t s  are used. 

These are spaces where t h e  analogs of (1.4) are v a l i d  i f  t h e  

The most important aspec t  of our e r r o r  ana lys i s  

is t h a t  es t imates  can be der ived i n  unweighted spaces f o r  t h e  

approximations. Numerical experiments i n d i c a t e  t h a t  the  use of these  weighted 

spaces g ive  a s ign i f i can t  increase  i n  accuracy, although refinement near  the 

crack is still needed as is t o  be expected. 

For s impl i c i ty  w e  s h a l l  consider  p l ana r  reg ions  Q with only one corner  

having i n t e r i o r  angle 0 as shown i n  Figure 1. Our r e s u l t s  are r e s t r i c t e d  

t o  the case 0 < 0 < 2n because of the  c r u c i a l  r o l e  played i n  the  a n a l y s i s  

by the  Hardy-Littlewood inequa l i ty  and continuous embedding i n  weighted 

Sobolev spaces.  The lat ter is known t o  be v a l i d  only when Q has t h e  cone 

0 

- 0  

proper ty ,  i.e., 8 f 2 ~ .  Moreover, t h e  r e g u l a r i t y  r e s u l t s  used for t h e  

weighted Sobolev spaces have only been developed f o r  p l ana r  o r  conica l  regions 

i n  [ 6 ] ,  hence our r e s t r i c t i o n  t o  t h e  p lanar  case. 

could be treated analogously. 

Neumann and mixed problems 

For b rev i ty  w e  cons ider  here  only the  D i r i c h l e t  

problem. 
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f 

FIGURE 1 

The planar region R 

2. Formulation of the Approximation 

For the number a > O  define 

1 and let %(a) be the closure of [Cm(n)l2 i n  t h i s  norm. L e t  

b e  f i n i t e  dimensional spaces. We seek 

(2.3)  @,E sg, 

which minimize 
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( 2 . 4 )  
6 2  

]grad -vhI - + r a l d i v  - v h + q $  - f I } 

R 

6 h over I$ CS6,  E Vh where r is  t h e  d i s t a n c e  t o  t h e  v e r t e x  (Fig. 1). 

Appropriate choices f o r  a > O  w i l l  be discussed i n  t h e  next s ec t ion .  

- 

An equivalent  statement of t h i s  v a r i a t i o n a l  p r i n c i p l e  involves  t h e  

b i l i n e a r  form 

and t h e  func t iona l  

I n  p a r t i c u l a r ,  t h e  minimum of ( 2 . 4 )  i s  cha rac t e r i zed  by t h e  following 

v a r i a t i o n a l  p r inc ip l e .  Find func t ions  ( 2 . 3 )  such t h a t  

6 h holds f o r  a l l  + E S and v € Vh. - _  6 
01 1 Observe t h a t  Ea(*;) and F ( - )  are continuous on I = H  ($2) x&(n). a 

Indeed, taking 

as t h e  norm on 1 ,  then a s  an easy consequence of t h e  Schwarz i n e q u a l i t y  

w e  o b t a i n  with a? 0 and q E Loo(L?) 
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2 and f o r  f € L (Q) i n  (2 .6) .  

Thus (2.7) has a meaning, and i n  f a c t ,  is  equ iva len t  t o  a Hermitian 

nonnegative d e f i n i t e  system of a lgeb ra i c  equat ions  once a b a s i s  is  chosen 

f o r  S g x  Vh. 

each f E L  (Q), then the  a lgeb ra i c  system is  p o s i t i v e  d e f i n i t e .  This  w i l l  

I f  w e  assume t h a t  (1 .1) -  (1.2) has  a unique s o l u t i o n  f o r  
.., 

2 

be t h e  case ,  f o r  example, i f  q is never  equal  t o  an  eigenvalue of t h e  

Laplacian wi th  D i r i c h l e t  'soundary condi t ions .  

3 .  Analysis of Er rors  

Because of t he  s i n g u l a r i t i e s  i n  the  s o l u t i o n  t o  (1 .1 ) -  (1 .2) ,  piecewise 

l i n e a r  func t ions  a r e  perhaps t h e  most p r a c t i c a l  choices  f o r  '6 and yh, 

and i n  t h i s  s e c t i o n  we s h a l l  restrict a t t e n t i o n  t o  t h i s  case. The g r i d s  

f o r  t he  space S6 of s c a l a r s  need not  co inc ide  wi th  t h e  g r i d s  f o r  t h e  

space V of vec to r s ,  and as we s h a l l  s e e  subsequently,  t h e r e  w i l l  be -h 

important reasons f o r  t h i s .  

We r e c a l l  t h a t  approximation theory asserts t h a t  t h e r e  i s  a p o s i t i v e  

number C s a t i s f y i n g  t h e  following [5]. 
L 01 

Given any wk and $ €  H (Q)n H (Cd)  t h e r e  are &€U+ and 

6, E s6 such t h a t  

(3.1) 

6 

( 3 . 2 )  
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for O <  - - _  t< k <  2 ,  t l R  and O <  h < h ,  O <  6 <  - 60. The goal of this section 

is to develop similar estimates for the errors 

in the least squares approximation. 

Crucial t o  our error analysis is the regularity of the solutions t o  

(1.1) - ( 1 . 2 )  in appropriate Sobolev spaces. 

that the interior angle is re-entrant, i.e. , 

given f E L2(h2) and q not being an eigenvalue there exists exactly one 

21T . Therefore due to solution @ of (1.1) - (1.2) in H (0) n W-@(Q), B =  - 

Kondratiev [6] the following important regularity result holds. 

For simplicity we shall assume 

IT< e o <  2 ~ .  Due to [5] for 

O1 1 

eo 

Theorem 1: Let g be not an eigenvalue of (l.l)y (1.2). Then there are 

71 
( 3 . 4 )  a> 2 t + 2  - 2S0' Y 'R'O 

such that for any f € Wk(Q) (t = 0 , l )  the solution 4 of (1.1) - ( 1 . 2 )  satisfies 

(3.5) 

Moreover, for 1 < s < 1 + so 

( 3 . 6 )  

It is an easy consequence of (2.7) that (u @ 1 is a best approxima- -hy 6 

B,(*,*). tion to (grad $,$I in the norm generated by 

following consequence of Theorem 1 and the approximation properties ( 3 . 1 ) -  

( 3 . 2 )  together with ( 2 . 9 ) .  

Thus we have the 

("Here 1 1 .  I l k , a  denotes the norm associated with $ . 
denotes the (unweighted) norm on Ht(O>. 

In addition, 1 1 .  
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Lemma 1. There i s  a cons tan t  C > O  depending only on CR and 

(3.7) 

Our next  estimate is  i n  the weighted dua l  norm def ined  as fo l lows  

(3.9) 

Lema 2. There is  a cons tan t  C > O  depending only on c i f l  which 

s a t i s f i e s  ( 3 . 4 ) ,  (3.8) and C R > O  such t h a t  

Proof .  L e t  0 E $+4 be given,  and cons ider  t h e  s o l u t i o n  5 t o  

(3.11) A C + q <  = rl i n  R,  ( = O  on r. 

L e t t i n g  

E = grad 5 

w e  have from (3.5) wi th  a s a t i s f y i n g  ( 3 . 4 )  and (3.7) 

(3.12) 'R!In lll,a+4' 
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Also 

Using or thogonal i ty  t h i s  becomes 

(3.13) 

Thus 

Using the  approximation p r o p e r t i e s  ( 3 . 1 ) -  (3.2) and tak ing  t h e  sup over 

n with 

of (3.11) s a t i s f i e s  

l lnll l++4- 5 1  we o b t a i n  (3.10) from (3.14) s i n c e  t h e  s o l u t i o n  5 

The lat ter inequal i ty  holds  due t o  t h e  con t inu i ty  of t h e  imbedding of 

i n t o  L2(a#l) ( [7] ,  p. 287) .  The cone property f o r  R i s  needed f o r  wa 
t h i s  r e s u l t .  

27r 
Lemma 3. There i s  a constant  C > O  depending only on c1 > 4 - - ,  

- eo 
and CR such t h a t  

(3.15) 
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2 Proof. The f i r s t  s t e p  i s  t o  so lve  fo r  € i n  L (R) 

(3.16) 
a 

For t h i s  system we have from (3.4) and (3.5) 

provided 2 - -  2.rr < 0 f o r  .rr~00#2.rr.  - Also i t  fol lows from (3.16) t h a t  

which af ter  i n t e g r a t i n g  by p a r t s  becomes 

(3.18) 

a u t  

Thus combining (3 .15) -  (3.19) and using or thogonal i ty  we  ob ta in  

L I n t e g r a t i n g  t h e  f i r s t  term on the  r igh t  by p a r t s  gives  t h e  s impler  form 
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The second term on the right hand side of (3.20) gives the second 

term in (3.15). Thus our task is to estimate the first term. To do this 

we use the Hardy-Littlewood inequality [7, p.  2861. 

with D 3 grad that 

This inequality states 

a-2 - 
a12 2 2 

(3.21) c l l r  D '11lO,O L Ilr DnI10,o 

provided 2 -2.rr 0 . Note that 

n R 

(3.22) -a Ir n l .  
R 

Thus using (3.9) we see that the right-hand side of (3.22) is bounded 

above by 

a+4 

which in turn is bounded above by 

a- 4 

To use (3.17) we must bound the second term in the above by Ilr~ll 

to do this we take 

and 2,a' 

(3.23) 4-a = 0 - 2  

in the Hardy-Littlewood inequality. This gives 
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(3.25) 

But a satisfies (3.7) and thus by (3.23) and (3.17) 

provided 

(3.26) 
21T 2 -  27T < u <  2 + - .  

- eo 

Combining (3.24) - (3.25) w e  ob ta in  (3.15) from (3.20). 

approximation proper ty  (3.1) f o r  k = 2 ,  t = l  i s  only quasi-optimal i f  

a s a t i s f i e s  (3.8).  

Note t h a t  t h e  

2 
I n s e r t i n g  (3.8) and (3.10) i n t o  (3.15) we  ob ta in  an L -estimate 

f o r  E .  

Theorem 2: There is a cons tan t  C depending only on IlqllL , a 1 4  - 2 1 ~ / 0 ~  

and CR such t h a t  

00 

Remark. For opt imal  accuracy we take 

(3.28) 
u s o  

6 - h  ; 

s i n c e  

than t h a t  f o r  t he  vec to r  f i e l d  

~ ~ = ' p i / 8 ~ ,  l ~ <  eo < 2 ~ ,  t he  g r id  f o r  t he  s c a l a r  f i e l d  

2 .  

4 must be f i n e r  
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We now use Lemma 1 to estimate e 5 u - u  -h To do this we shall need 

for S6 to have an inverse property. More precisely, we shall assume 

there is a number 0 < C< Q) independent of 6 such that 

21T Theorem 3: Let (3.28) and (3.29) hold. Then for c i > 4 - -  
- eo 

Proof. Let q 6 € S 6  satisfy 

(3.31) 

we obtain 

(3.32) 

But 

(3.33) Itgrad E l l o  5 Ilgrad((b-+g) ) l o  + IIgrad(+6-(b6) 110 

We use (3.31) t o  estimate the first term, and apply the inverse inequality 

(3.29) to the second term to get 

c 
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But 

Combining these  estimates we o b t a i n  ( 3 . 3 0 )  with ( 3 . 2 8 ) .  

Remark (I). 

g r i d  for t h e  scalar p o t e n t i a l  

To get  the full rate of convergence it  is necessary t o  r e f i n e  t h e  

$, taking 

1 /so 
6 - h  

This g ives  

( i i )  

( 3 . 3 6 )  

For mixed boundary condi t ions 

- -  
where v denotes t h e  ou te r  normal a t  the  boundary r = r D g  rN. The 

s o l u t i o n  $ of (1.1) behaves l i k e  r a(@) a t  the  s i n g u l a r  po in t s ,  
nf  2e0 

. -2, w & r e  Q: is  a n a l y t i c .  Therefore t h e  above a n a l y s i s  holds as w e l l  f o r  

t h e  mixed boundary va lue  problem ( l . l ) ,  ( 3 . 3 6 )  by choosing t h e  weight 

2eo/IT i n  t h e  least squares  scheme (2 .4 )  and r e f i n i n g  t h e  mesh as 6 = h  

( i i i ) .  Since t h e  s o l u t i o n s  of crack problems behave l i k e  t h e  s o l u t i o n s  

of mixed boundary va lue  problems w i t h  smooth boundary, our weighted least 

squares  method can a l s o  be applied t o  crack problems. 

6 = h2 

Choosing ~ 1 1 3 ,  

w e  o b t a i n  wi th  piecewise l i n e a r  test  and t r i a l  func t ions  
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The standard Galerkin procedure gives for 

6 = h  . But in order to obtain ( 3 . 3 7 )  for e with the Galerkin procedure, 

one has to use special singularity functions as test and trial functions. 

The results in this paper do not apply to the general three- 

E the same error estimate if 

2 

(iv). 

dimensional case because the regularity results used are not known for 

three-dimensional domains with arbitrary corners. 
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